diff --git a/more-data.py b/more-data.py index 4c73c30..331874a 100644 --- a/more-data.py +++ b/more-data.py @@ -42,7 +42,7 @@ pinst235 = [14+31.755831065931034, 14+32.45807181713604] pinst5 = [14+19.567076092915567, - 14+-20.05316841156921, + 14+20.05316841156921, 14+18.774664683716043, 14+20.252929968934183, 14+19.01518926375179] @@ -88,7 +88,7 @@ print(f'Estimated path-loss exponent n: {n:.2f}') predicted_PL = PL_d0 + model.predict(X) # calc shadowing std. deviation using all measurements -residuals = measured_PL = predicted_PL[:, np.newaxis] # residuals for all +residuals = predicted_PL[:, np.newaxis] # residuals for all # measurements sigma = np.std(residuals) @@ -96,12 +96,29 @@ print(f'Shadowing standard deviation: {sigma:.2f} dB') # plot plt.figure(figsize=(8,6)) -plt.scatter(np.repeat(X, measured_PL.shape[1]), measured_PL.flatten(), - label='Measured PL') -plt.plot(X, predicted_PL, color='red', label='Fitted line') +#plt.scatter(np.repeat(X, measured_PL.shape[1]), measured_PL.flatten(), +# label='Measured PL') + +#for xyz in measured_PL: +''' +for xyz in range(5): + plt.scatter(np.repeat(X, measured_PL[xyz]), + measured_PL[xyz].flatten(), + label=f'Path Loss {xyz}') +''' + +#plt.plot(X, predicted_PL, color='red', label='Fitted line') + +for xyz in range(5): + plt.plot(X, measured_PL[xyz], 'ro') + +plt.plot(X, predicted_PL, label='Fitted Line') + plt.xlabel('10*log10(d/d0)') plt.ylabel('Path Loss (dB)') plt.title('Path Loss Experiment & Shadowing Estimation') plt.legend() plt.grid(True) plt.show() + +print(measured_PL)