better math?
This commit is contained in:
61
spice/rvals-theory1.md
Normal file
61
spice/rvals-theory1.md
Normal file
@@ -0,0 +1,61 @@
|
||||
# Resistor Values and Combinations
|
||||
|
||||
The schematic calls for resistor values that are not available to us without some light sorcery. This is an attempt.
|
||||
|
||||
Every resistor from the pack is rated for 0.25W and has a tolerance of $\pm5%$. Want to figure out how that could affect my calculations? Me neither.
|
||||
|
||||
## 90Hz-110Hz
|
||||
|
||||
### low-pass
|
||||
$(120 \parallel 47) + 3.3 = 37.072 \Omega$
|
||||
|
||||
### high-pass
|
||||
$(68 \parallel 47) + (470 \parallel 2.2) = 28.245 \Omega$
|
||||
|
||||
## 290Hz-310Hz
|
||||
|
||||
### low-pass
|
||||
$(220 \parallel 68) + 2.2 + 1 = 55.144 \Omega$
|
||||
|
||||
### high-pass
|
||||
Luckily, we already have 47 $\Omega$ resistors.
|
||||
|
||||
## 950Hz-1050Hz
|
||||
|
||||
### low-pass
|
||||
$(22 \parallel 47) + 2.2 = 17.186 \Omega$
|
||||
...or alternatively:
|
||||
$(10 \parallel 10) + 10 + 1 + 1 = 17 \Omega$
|
||||
|
||||
### high-pass
|
||||
$(10 \parallel 10) + 10 = 15 \Omega$
|
||||
|
||||
## 3.2kHz - 3.4kHz
|
||||
|
||||
## low-pass
|
||||
$47 + 1 + 1 = 49 \Omega$
|
||||
|
||||
## high-pass
|
||||
$22 + 22 + 1 + 1 = 46 \Omega$
|
||||
|
||||
...no one ever said we had to be clever.
|
||||
|
||||
## 9khz - 11khz
|
||||
|
||||
## low-pass
|
||||
$(10 \parallel 10) + (68 \parallel 3.3) + 10 = 18.147 \Omega$
|
||||
|
||||
## high-pass
|
||||
$(22 \parallel 22) + 1 + 1 + 1 = 14 \Omega$
|
||||
|
||||
---
|
||||
|
||||
# Bonus: some fun(?) and useful(?) resistor values
|
||||
|
||||
$(10 \parallel 10) = 5 \Omega$
|
||||
|
||||
$(220 \parallel 22) = 20 \Omega$
|
||||
|
||||
$(22 \parallel 22) = 11 \Omega$
|
||||
|
||||
$(100 \parallel 150) = 60 \Omega$
|
||||
Reference in New Issue
Block a user